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Introduction

The importance of reducing jet noise in both commercial and military aircraft applications has

made jet acoustics a significant area of research [1 ]. A technique for jet noise prediction commonly

employed in practice is the MGB approach [2], based on the Lighthill acoustic analogy [3]. This

technique requires as aerodynamic input mean flow quantities and turbulence quantities like the ki-

netic energy and the dissipation. The purpose of the present paper is to assess existing capabilities for

predicting these aerodynamic inputs. Two modem Navier-Stokes flow solvers, coupled with several

modem turbulence models, are evaluated by comparison with experiment for their ability to predict

mean flow properties in a supersonic jet plume. Potential weaknesses are identified for further inves-

tigation. Another comparison with similar intent is discussed by Barber et al. [4]. The ultimate goal

of this research is to develop a reliable flow solver applicable to the low-noise, propulsion-efficient,

nozzle exhaust systems being developed in NASA focused programs. These programs address a

broad range of complex nozzle geometries operating in high temperature, compressible, flows.

Seiner et al. [5] previously discussed the jet configuration examined here. This convergent-

divergent nozzle with an exit diameter of 3.6 in. was designed for an exhaust Mach number of

2.0 and a total temperature of 1680 ° F. The acoustic and aerodynamic data reported by Seiner et

al. [5] covered a range of jet total temperatures from 104 ° F to 2200 ° F at the fully-expanded
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nozzle pressure ratio. The aerodynamic data included centerline mean velocity and total temperature

profiles.

Computations were performed independently with two CFD codes, ISAAC [6] and PAB3D [7].

Turbulence models employed include the k-e model [8], the Gatski-Speziale algebraic-stress model

[9] and the Girimaji model [ 10], with and without the Sarkar compressibility correction [11]. Cen-

terline values of mean velocity and mean temperature are compared with experimental data.

Codes and Models

ISAAC (Integrated Solution Algorithm for Arbitrary Configurations) [6] is a finite-volume code

of second-order accuracy which solves the full Favre-averaged Navier-Stokes equations. An upwind

scheme based on Roe's flux-splitting is used for the convective terms, central differencing for the

diffusion terms and an implicit, spatially split, approximate-factorization scheme for iteration.

The PAB3D code [7] solves the Reynolds-averaged Navier-Stokes equations in a thin-shear-layer

approximation. Diffusion terms are central-differenced. The implicit iteration operator employs the

van Leer scheme and the explicit terms (e.g., convective terms) are evaluated with the Roe scheme.

The grid used here is composed of five blocks, one in the nozzle (61 × 61 mesh points), one

external to the nozzle (61 x 61 mesh points) and three blocks downstream of the nozzle exit (65 × 121,

97 x 121 and 97 x 121 mesh points). The mesh is very fine near the nozzle walls and near the jet

axis in the plume, and becomes gradually coarser away from the axis. Grid-independence tests

(see below) indicated this grid was adequate for the computations of the quantities examined in

this work. Velocity, pressure and temperature boundary conditions consistent with experimental

conditions are imposed at the upstream boundary inside the nozzle and a modest free-stream flow of

M = 0.05 is imposed through a one-dimensional characteristic far-field boundary condition at all

non-wall boundaries except the downstream boundary, where a subsonic outflow boundary condition

is imposed. No-slip boundary conditions are imposed at all walls and axisymmetry is assumed.

The turbulence models employed in this investigation include both k - _ and algebraic-stress

two-equation models. The Reynolds stress, Tij, is modeled by the expression

-PTij _-pk6ij - k2 1= gsk  ,j)+  4L(s, w j + sj w.)
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Sij = (1/2)(uid+ fzj,i) and Wij = (1/2)(f_i,j-f_j,i) being the symmetric and anti-symmetric parts of

the mean-velocity-gradient tensor. Commas denote differentiation, the _5i are velocity components

and -f is the average density. The remaining symbols are defined below.

The turbulent kinetic energy k and the solenoidal part of the dissipation rate Es (the total dis-

sipation e -- es + ec is the sum of the solenoidal and curl-free dissipations; in the case of no

compressibility correction ec = 0) are determined using the conservation equations

((-f]g),t -{- (-fUjk),j = ---fTrnn?2rn,n -- -fie -'[- (# -'_ -fC;f# _---[---) ]_,j

UkCs / ,j

,J

For the k - e model, a4 = 0, c_s = 0 and C_ = C_, = const. In the k and e_ equations, ak, _,

C_1 and C_2 are constants and integration to the wall is possible using the damping functions f,, fl

and ]'2- Also in the e equation, we have g = e_ - #/p [Vv_l 2 and X_, a wall-correction function.

The Gatski-Speziale algebraic-stress model [9] employs (1) with C_, oq, and as functions of k,

e and invariants of Sij and Wij. No wall damping of the Reynolds stress is required, so f, = 0, and,

in ISAAC, new fl and f2 are introduced to preserve proper log-law behavior.

The Girimaji algebraic-stress model [10] also employs (1); in this case the coefficients C_, a4

and o_s are determined via the (explicit) solution of a cubic algebraic equation; see the work of

Girimaji [ 10] for details of this solution and of the selection of the physically relevant root.

The models were tested both with and without the Sarkar compressibility correction [ 11], which

gives for the compressible part of the turbulent dissipation sc the value a_M_e_, Mt being the tur-

bulent Mach number v/_-/a_ and a being a constant taken here to be 0.5.

Results and Discussion

Computations were performed at jet total temperatures of 104 ° F and 1550 ° F. Extensive tests of

the adequacy of the spatial resolution were conducted; comparison of runs with the full grid and with

the grid coarsened by factors of 2 and 3 showed negligible differences. The value of y+ for points

adjacent to the walls of the nozzle was always less than 0.5 for the full-resolution computation,



indicatingthat the wall layerswere satisfactorilyresolved.All runswerecontinuedwell pastthe

point wherea steadystatein themeanquantitieshadbeenreached.

Datafor the1550° FcaseappearinFigure1.Themeanvelocityandtemperatureat thecenterline

areshownascomputedusingthe variousmodelsdiscussedin theprevioussectionandcompared

with experimentalresults[5]. While thereis a gooddealof variationin thecomputationalresults

(thisvariationis muchgreaterthantheexperimentaluncertainty[5]), theISAAC resultsarebetter,

overall, thanthePAB3Dresults.Thecenterlinemeanvelocityfor the 104° F case is shown (model

by model) in Figures 2 and 3 and agreement is fairly good for both codes. While the results shown

here are worse than one would like, they are better than earlier results [4].

The simulations employing the Sarkar compressibility correction were generally no better than

those not. In the 104 ° F jet case, the correction makes the PAB3D predictions significantly worse,

and the ISAAC predictions are slightly high by about as much as they were low for the computa-

tions without the compressibility correction. In the 1550 ° F jet case, the compressibility correction

significantly improves the PAB3D results, but makes the ISAAC results dramatically worse.

Figure 1 shows a grouping of the results from each of the two codes; this grouping occurred

in the other case as well. It suggests the differences in results may be due more to differences in

the codes than to differences in the models. In order to further investigate these differences, the

k - e model in PAB3D was implemented in ISAAC (except for the PAB3D form for X,_, which

involves derivatives not readily available in the ISAAC code), as was the PAB3D implementation

of the Gatski-Speziale ASM. Comparisons between the ISAAC implementations of the models, the

PAB3D implementations of the models and the PAB3D models implemented in ISAAC are shown

in Figures 2 and 3 for the 1040 F case. The results from ISAAC with its own models and with

the PAB3D models were very similar for the k - _ model and the Gatski-Speziale algebraic-stress

model, indicating that the differences between the ISAAC and PAB3D results are primarily due to

the codes themselves.

In summary, overall agreement of the computations with experiment is good. The two codes

each gave fairly consistent results with the different turbulence models, and the differences between
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thecodesseemedto begreaterthanthedifferencesbetweenthemodels.Additionalevidencefor this

wasgivenby the computationswith ISAAC usingthePAB3Dversionsof themodels,which gave

resultsmuchcloserto the ISAAC resultswith its own modelsthanto thePAB3Dresults. Possible

reasonsfor thesedifferencesbetweenthe resultsof the two codesincludedifferent handlingof

viscousfluxes (thin shearlayer in PAB3Dvs. full Navier-Stokesin ISAAC), first-orderadvection

in thePAB3Dturbulenceequationsvs. second-orderadvectionin all equationsin ISAAC andother

differencesin thenumericalalgorithmsemployedin thetwo codes.

Finally, wenote thattheaerodynamicinput is only partof thestory,andtheMGB noisepredic-

tion mayemphasizeor de-emphasizedifferentaspectsof the input error.
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ABSTRACT

Through the use of both an a priori analysis of direct numerical simulation data and

experiments with large-eddy simulations, a non-Smagorinsky grid-size dependence is estab-

lished for the Smagorinsky sub-grid scale model for low numbers of resolved scales. It is

shown that an increase in the Smagorinsky constant as the grid size is increased permits suc-

cessful large-eddy simulations for cut offs approaching the energy-containing range of length

scales. A detailed comparative analysis is made of the second-order turbulence quantities as

determined by the differently resolutioned large-eddy simulations.



is periodic and sharesmany properties with common shear flows, but lacks many of the

computational difficulties presentedby homogeneousshearflow or suchwall-bounded shear

flows as channelflow or boundary-layerflow. Kolmogorov flow wasoriginally proposedby

Kolmogorov to his studentsasasimpleflow for the study of stability problemsin shearflows

and has since been subjected to a number of stability analyses[5]. Turbulent Kolmogorov

flow in two dimensionswasstudiedby She[6]; three-dimensionaldirect numerical simulations

of turbulent Kolmogorov flow employingthe physical viscous stresseswere performed by

Shebalin and Woodruff [7]. Three-dimensionalhyperviscosity simulations were performed

by Borue and Orszag[8]. Somepreliminary results from the presentinvestigation havebeen

presentedearlier [9] and the presentresults havebeenrecently presented[10].

The question of possiblealternative grid-sizedependencesfor the Smagorinskymodel is

hereapproachedin two ways. First, an a priori analysis of a 643 direct-numerical simulation

(DNS) data set is conducted. The fully-resolved velocity field from the DNS is filtered over

a wide range of filter widths; for each filter width, both the Smagorinsky model formula

and the Reynolds stress it is supposed to predict are evaluated. Comparing the two permits

the filter width (or grid size) dependence of the Smagorinsky model to be assessed. The

second approach to assessing the grid-size dependence of the Smagorinsky model is by LES

experimentation: at each of a number of numerical resolutions, simulations are run with

different values of the Smagorinsky constant. Determining which value of the Smagorinsky

constant leads to the best results at a given resolution yields an empirically determined

grid-size dependence.

Encouragingly, both approaches lead to similar conclusions about grid-size dependence.

In both cases, an intermediate range of wave numbers (or grid sizes) was found where the

standard A 2 grid-size dependence worked well. Beyond the low-wavenumber (coarse res-



olution) end of this range, an enhancedgrid-size dependenceis found to be necessaryto

give the best possibleresults, both in the a priori analysis of the DNS data set and for

the LES experiments. Satisfactory LES results were achieved at suprisingly low resolutions

when an appropriate grid-size dependence was used, though there was deterioration in the

predictions, particularly of the turbulent shear stress.

The investigation outlined in this paper has sought to establish in a simple way that

there is merit to the idea of altering the grid-size dependence of a sub-grid-scale model

(in this case, the Smagorinsky model, with its traditional grid-size dependence based on

inertial-range dynamics) in order to compensate for limited under-resolution in a large-eddy

simulation. In keeping with this goal, a simple criterion for selecting the best Smagorinsky

constant has been chosen (comparing the kinetic energies in different simulations) and sim-

ple criteria for assessing the adequacy of the under-resolved simulations (comparing several

second-order statistical quantities) were employed in this preliminary investigation. More

sophisticated approaches to fixing the Smagorinsky constant (including a theoretical discus-

sion of its grid-size dependence as the energy-containing range is approached from above)

and to assessing the usefulness of under-resolved large-eddy simulations are the subject of

current investigation.

Following the problem statement and notational definitions of the next section, the a

priori analysis of the DNS data set and the LES experiments are discussed. The paper

concludes with a discussion of the results and their implication for the LES of complex

flOWS.

Problem Statement and Numerical Considerations.

Kolmogorov flow is described by the Navier-Stokes equations subject to an artificial

periodic body force with wavenumber k I and amplitude kfv2o. An appropriate nondimen-
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sionalization consists of using 1/k! for the referencelength and 1/kfvo for the reference

time; the Reynolds number is then vo/kfu. Taking the force vector to be in the positive x

direction, the Navier-Stokes equations for an incompressible flow become

D______v= __lvp + 1V2v + [ sinz, (1)
Dt p Re

Periodic boundary conditions are imposed in all three directions, so the forcing wavenumber

kf reappears in the formulation in the ratio of the forcing wavenumber to the wavenumber

of the longest wave contained in the box; this ratio will hereafter be denoted simply kf.

The simulations examined in the present investigation have a Reynolds number of 28 and

a forcing wavenumber of 6. This Reynolds number is sufficiently high to give fully developed

turbulence (transition to turbulence occurs at Re = 12 - 13 in this nondimensionalization

[6].) Previous experience with this flow [11] indicates the flow attains a statistically steady

state more rapidly as the forcing wavenumber is increased; the use here of kf = 6 provides

fairly brief initial transients.

In the direct numerical simulation that provides the data set employed in the a priori

analysis, the code of Shebalin [12] was used as configured for the earlier DNS found in

Shebalin and Woodruff [7]. This code is pseudo-spectral with Fourier modes in the three

spatial directions. A predictor-corrector time stepping algorithm is employed, with the

viscous terms handled implicitly and the nonlinear terms handled explicitly.

The large-eddy simulations were performed with the same code, as adapted for LES

for the simulations discussed in Woodruff, Shebalin and Hussaini [11]. The sub-grid-scale

stresses vii are incorporated as an explicit contribution to the time stepping; in this case the

traditional Smagorinsky expression is used [13]

= --CsA2 /Sm Smn S j, (2)



where Cs is the Smagorinsky constant, A 2 is a measure of the grid size and Sij is the rate-

of-strain tensor. As has been customary with LES using the Smagorinsky model and Fourier

modes, the grid size (relative to the length of the sides of the box) is taken as 27r/N, with

N the number of modes in each coordinate direction. (All simulations considered here have

the same number of modes in each coordinate direction.)

Since the fast-Fourier transform algorithm in the code expects the number of modes to

be a power of two, runs with intermediate numbers of modes are performed by zeroing out

the "excess" modes at each time step. For example, 243 runs are performed with the code

set for 32 a and with modes with wavenumbers of 13 through 16 zeroed out.

All DNS and LES runs reported here were initialized with a random initial velocity field

with an exponential energy spectrum. Time series for the total kinetic energy, dissipation,

etc. were used to establish that a statistically steady state had been reached.

A priori Analysis.

The goal of the a priori analysis is to determine what grid-size dependence gives the

best fit between the sub-grid-scale turbulent stresses predicted by the Smagorinsky model

and the true sub-grid-scale stresses when both are determined from a DNS data set. A 643

simulation was run as described in the previous section until a statistically steady state was

reached, then the instantaneous velocity field from this simulation was used in the analysis.

The instantaneous velocity field was first filtered into super- and sub-grid components

by means of a spectral cut-off filter (denoted (.)), which is to say that the velocity field was

decomposed according to

' (3)ui = (ui>+

with (ui) containing all Fourier modes with wavenumber less than the cut off kc and u'i =

ui - (ui) containing all Fourier modes with wavenumber greater than kc. This decomposition



;rformed for all integer values of kc running from 32 (no filtering, with all modes

md in the super-grid velocity ui) down to 2 (nearly complete filtering, with only the

ad k = 1 modes contained in the super-grid velocity and all the others contained in

b-grid velocity u_.)

each of the cut-off wavenumbers kc, the Smagorinsky representation of the sub-grid-

.tresses was computed, as well as the true stresses it is supposed to predict. The two

.s Aii = x/'S,_,_Sm,_ Sij and Tit = --(U_U_) that result are, according to the Smagorinsky

(eqn. 2), supposed to be proportional, with proportionality factor CsA 2. An empirical

9f the proportionality factor may be determined by reducing these second-rank tensor

varying in x, y and z to single numbers and taking their ratio.

ch of the components of these two tensors is a function of x, y and z; in this work,

ruction is reduced to a single number by taking the L 2 norm. Such a norm seems

priate for this problem, given the statistical homogeneity of the flow in the x and y

ions. The flow is not statistically homogeneous in the z direction, but even there flow

es do not cluster in particular regions of the flow domain and a norm which weights

y all parts of the flow seems reasonable. A more specialized norm will probably be

,ary in order to get useful results when such an analysis is applied to, say, turbulent

lary-layer flow or turbulent channel flow.

summary, then, for each filter cut-off wavenumber the velocity field is decomposed

upergrid and subgrid parts, the true sub-grid-scale stress and the Smagorinsky sub-

tress are formed, the L 2 norms are taken of each of the six independent components

.' tensors, and the ratios are taken. In the results presented here, these ratios have

further divided by A 2, so that the result of the calculation is a grid-size dependent

:orinsky constant Cs.
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does exist. However, at this early stage of this research program, this measure of agreement

provides a simple and surprisingly effective means of comparison.

In addition to the 323 reference simulations, large-eddy simulations were carried out at

resolutions of 243, 163, 143 and 123. Time histories of results are shown in Figures 2 - 6;

Table 1 contains parameters for the individual simulations and time averages of representative

quantities over the statistically steady portion of the simulations' time histories. The time

histories of the total kinetic energy for the most extreme case, the 123 simulations, are

compared against the 323 reference simulations in Figure 2. Time histories are shown for

simulations with values of the Smagorinsky constant that bracket the 323 reference plots; the

two time histories are shown to give a rough impression of the sensitivity of the results to

the change in Cs at each resolution. Thus, at least as far as the kinetic energy is concerned,

adjustment of the Smagorinsky constant permits successful simulations for resolutions as low

as 123 . The extent to which other quantities are successfully simulated is examined in detail

below.

Interpolated values for Cs were plotted in Figure 1 for comparison with the Cs values

determined from the a priori analysis; it is seen that the LES experiments are consistent with

the a priori results. The determination of similar variations in the Smagorinsky constant

by these two independent means is strong evidence for the utility of alternative grid-size

dependences in LES. Specifically, these results indicate that not only is the enhanced grid-

size dependence necessary for low-resolutioned LES (as indicated by the a priori analysis),

but it is sufficient (at least as far as the kinetic energy is concerned.)

Time histories of some other first and second order statistical quantities are shown in

Figures 3 - 6. In each Figure, one simulation at each resolution is shown. (In all cases, the

simulation is the one with the higher kinetic energy.) The statistical quantities are computed
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using averagesin the x - y plane. Thus, fi is a function of z; Figure 3 shows the L 2 norms

of these functions. The fluctuating velocities u' = u - _ and w' = w - _ are represented by

their L 2 norms in Figures 4 and 5. (Note these fluctuating velocities are different from the

primed, fluctuating, velocities defined in the previous section.) The final plot, Figure 6, are

of the L 2 norms of the correlation coefficient, defined by

_1Wt

= (4)

Considering first the mean and fluctuating velocities of Figures 3-5, it is clear that

almost all the simulations' predictions for these quantities cluster together quite well, once

the initial transients have evolved into the statistical steady state. The exception is the

123 simulation, where it is clear that the limits of resolution have been exceeded. It is

interesting to note that the 123 simulation has achieved the correct total kinetic ener_"

by significantly overestimating the plane-averaged mean velocity and underestimating the

fluctuating velocities, indicating the low resolution is suppressing the fluctuations.

The time series of the L 2 norm of the correlation coefficient shown in Figure 6 provide a

more rigorous measure of the faithfulness of the simulations to the true turbulence physics,

and their examination reveals weaknesses in the lower-resolutioned simulations. The C_y

and Cyz correlations (not shown) are reproduced fairly well by all simulations (even the 12 3

simulation); it is, however, the Cx_ correlation, describing the Reynolds stress component

that effects energy transfer from the mean to the fluctuating motion, where real breakdowns

in the low-resolution simulations may be seen. Figure 6 shows that only the 243 simulation

reproduces the steady-state value of Cx_ correctly, with the 163 and 143 simulations giving

values around half the true value. Curiously, and probably fortuitously, the 123 simulation

does better here than the 143 and 163 simulations. It is worth noting as well (see Table 1)

that the correlation coefficients are essentially unaffected by the changes in the Smagorinsky

12



constant at a given resolution.

Summary.

Theseresults indicate that the low-resolutionsimulationsnot only correctly reproducethe

total kinetic energy,but, exceptfor the lowest-resolution,123simulation, correctly reproduce

most of the other statistical quantities examined as well. The major failure of the low-

resolution simulations wasin the determination of the correlation coefficientC_z, where only

the 243 simulation came close to the correct value.

In addition to this failure of the low-resolution LES results in the prediction of the

C_z correlation, the results (as presented in Table 1) also show virtually no sensitivity of

this correlation coefficient to changes in the value of the Smagorinsky constant. It may be

concluded, then, that not only do the simulations performed with the Smagorinsky constant

tuned to give the correct kinetic energy fail to give the right Cxz, but that no simple tuning

of the Smagorinsky constant will give good results for the correlation coefficient. A more

drastic adjustment of the model is necessary, and is being developed.

The breakdown of the under-resolved simulations at 123 and the failure of the under-

resolved simulations to produce the correct correlation coefficient C_z are likely related.

Reducing the number of modes and the resolved scales inhibits the mechanism for the transfer

of the energy from the mean to the fluctuating motion. At the 123 resolution, this inhibition

has reached the point where insufficient energy flows into the fluctuating motion and so the

mean energy is too high and the fluctuating energy is too low. Since, in this flow, as in other

parallel flows, the energy transfer between the mean and fluctuating motion is mediated

by the C_ correlation, the inhibited energy transfer is reflected in incorrect values for that

correlation.

The a priori results and the LES experiments described here indicate that, when used

13



with care, low-resolution simulationswith an alternative grid-sizedependencecan give sat-

isfactory results. Significant advancesin the application of LES to complex turbulent flows

of practical interest may thus be possible,provided reliable, general-purposemodelsare de-

veloped incorporating the conceptof alternative grid-sizedependences.Researchinto such

models is currently under way.
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Table 1: Simulation parametersand temporal averagesof results.

No. Modes Cs K I1 11 Ilu'll IIv'll IIw'll

32 0.006 2.33 0.93 1.24 0.89 1.21 0.41

32 0.008 2.08 0.74 1.20 0.82 1.22 0.44

24 0.0045 2.48 0.88 1.36 0.96 1.19 0.40

24 0.0056 2.33 0.85 1.32 0.90 1.17 0.41

16 0.008 2.49 0.96 1.28 0.88 1.28 0.25

16 0.012 2.26 1.04 1.21 0.71 1.20 0.27

14 0.0077 2.38 0.85 1.26 0.82 1.33 0.27

14 0.010 2.18 0.82 1.15 0.69 1.37 0.28

12 0.0087 2.44 1.75 0.97 0.81 0.45 0.32

12 0.0096 2.25 1.69 0.92 0.78 0.42 0.34
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List of Figures

Figure 1: Smagorinsky constant Cs as function of grid-size, as determined by a priori analysis

(solid line) and LES experiments (dots).

Figure 2: Kinetic energy versus time for 323 simulation with Cs = 0.006 (solid line), 323 simu-

lation with Cs = 0.008 (long-dashes), 123 simulation with Cs = 0.0087 (dashed line),

12 a simulation with Cs = 0.0096 (dotted line).

Figure 3: Ilgll versus time for 323 simulation with Cs = 0.006 (solid line), 243 simulation with

Cs = 0.0045 (long dashes), 163 simulation with Cs = 0.008 (dashed line), 143 simu-

lation with Cs = 0.010 (dash-dotted line), 123 simulation with Cs = 0.0087 (dotted

line).

Figure 4: I[u'[[ versus time for 32 a simulation with Cs = 0.006 (solid line), 24 a simulation with

Cs = 0.0045 (long dashes), 16 a simulation with Cs = 0.008 (dashed line), 143 simu-

lation with Cs = 0.010 (dash-dotted line), 12 z simulation with Cs = 0.0087 (dotted

line).

Figure 5: I[w'll versus time for 323 simulation with Cs = 0.006 (solid line), 243 simulation with

Cs = 0.0045 (long dashes), 16 a simulation with Cs = 0.008 (dashed line), 143 simu-

lation with Cs = 0.010 (dash-dotted line), 123 simulation with Cs = 0.0087 (dotted

line).

Figure 6: ]]Cx_[[ versus time for 323 simulation with Cs = 0.006 (solid line), 243 simulation

with Cs = 0.0045 (long dashes), 163 simulation with Cs = 0.008 (dashed line), 143

simulation with Cs = 0.010 (dash-dotted line), 12 a simulation with Cs = 0.0087

(dotted line).
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Figure 1" Smagorinsky constant Cs as function of grid-size, as determined by a priori analysis

(solid line) and LES experiments (dots).
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Figure 2: Kinetic energy versus time for 323 simulation with Cs = 0.006 (solid line), 323

simulation with Cs = 0.008 (long-dashes), 123 simulation with Cs = 0.0087 (dashed line),
123 simulation with Cs = 0.0096 (dotted line).
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Figure 3: [lell versus time for 32 a simulation with Cs = 0.006 (solid line), 243 simulation with

Cs = 0.0045 (long dashes), 163 simulation with Cs = 0.008 (dashed line), 143 simulation

with Cs = 0.010 (dash-dotted line), 123 simulation with Cs = 0.0087 (dotted line).
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Figure 4: Ilu'[I versus time for 323 simulation with Cs = 0.006 (solid line), 243 simulation

with Cs = 0.0045 (long dashes), 163 simulation with Cs = 0.008 (dashed line), 143 simulation

with Cs = 0.010 (dash-dotted line), 123 simulation with Cs = 0.0087 (dotted line).
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Figure 5: IIw'll versus time for 32 a simulation with Cs = 0.006 (solid line), 24 a simulation

with Cs = 0.0045 (long dashes), 163 simulation with Cs = 0.008 (dashed line), 14 a simulation

with Cs = 0.010 (dash-dotted line), 12 a simulation with Cs = 0.0087 (dotted line).
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Figure 6: IIC=ll versus time for 323 simulation with Cs = 0.006 (solid line), 243 simulation

with Cs = 0.0045 (long dashes), 163 simulation with Cs = 0.008 (dashed line), 143 simulation

with Cs = 0.010 (dash-dotted line), 123 simulation with Cs = 0.0087 (dotted line).
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